PHYSICS

Ross Hays, Isaac Folzenlogen,
John Chumley, Zachary Atwood

Physics Engines

hy are physics engine needed

Many games what some response in game

to collisions and other interactions

e Programming every possible interaction
in infeasible

e Reusable between multiple games

Imitations

Real time physics engines such as those
used in games cannot simulate perfect
interactions

Some shortcuts are needed to keep
processing time down for real time

Too many objects to simulate also results
in slowdown

me popular physics engines

DIA PhysX (used in Unity & Unreal)
avok (Half-Life 2, Halo series, Skyrim)
Box2D (2D physics engine, Angry Birds)
Bullet (open source, shown later)

uncing ball demonstration

1 using UnityEngine;

2 using System.Collections;

3

41 : MonoBehaviour {

5 ith all needed objects
6

7 tion the groun 7=

8

GameObject ground = GameObject. CreatePrlmltlve(PrlmltlveType Plane) ;
ground.name = "Ground";

ground.transform.localScale = new Vector3 (100, 1, 100):;
ground.transform. p031t10n VectorS(O 0, 0):

0

o

[y

S

GameObject ball = GameObject. CreatePrimitive(PrimitiveType.Sphere);
ball.name = "Bouncing ball";
ball.transform.p031tlon = ne

w

S

w

()]

|Il

Physchaterlal bouncyMaterlal = new PhysicMaterial();
bouncyMaterial .bounciness = 1;

bouncyMaterial .bounceCombine = PhysicMaterialCombine.Maximum;
ball. GetComponent<C0111der>() .material bouncyMaterial;

‘___
O W o N

the PhysX world by attaching rigidbodies

=
-
(V1]

\II

ngldbody groundBody ground. AddComponent<R1g1dbody>(),
R1g1dbody ballBody ball. AddComponenc<R1g1dbody>(),

=
w

an't rte +=%h =% b £

m
W
1
|Il
|
|I
|

i

m

groundBody isKinematic = tru

>,
wn
m

-
r

= cu
N

23

plementation: Phases & Solvers

Two main components of most physics
engines: collision detection and collision
resolution

e Collision detection broken into multiple
phases

Collision resolution uses multiple solvers

[lision Detection

oad Phase: Basically what it sounds like,
reliminary BB check or sweep and prune

Narrow Phase: Exact collisions checked for
if the possibility made it past the broad
hase

[lision Resolution

Solvers are algorithms that exist to
decide the proper response to all
collisions that made it past detection
e |terative solvers iteratively improve
e Allow callbacks on specific items for user
handled collisions

[lision demonstration

ollision demonstration

void CreateBoxPyramid(int dimension) {
GameObject pyramid = new GameObject ("pyramid®);
for (int y = 0; y++) |

layerCount = dimension - y;
(int x = 0; x < layerCount; x++) {
or (int z = 0; z < layerCount; z++) {

Vector3 boxCenter new Vector3():
boxCenter.x = x - layerCount / 2.0£f;
boxCenter.y = layerHeight;
boxCenter.z = z - layerCount / 2.

box.name = "Box[" + X + "," + y + "," + z + "]";
box.transform.parent = pyramid.transform;
box.transform.position = boxCenter;
box.AddComponent<Rigidbody>() ;

GameObject ground GameObject CreatePrlmltlve(PrlmltlveType Plane) ;
ground.name = "Ground"”;

ground.transform.localScale = new Vector3 (100, 1, 100);
ground.transform.position = new Vector3(0, 0, 0):

Rigidbody groundBody = ground.ZddComponent<Rigidbody>():
groundBody.isKinematic = true;

place boxes in a pyramid shape

CreateBoxPyram;d(lZ),

TTEDATTUSR SATUERD TTEDATT
KA - KA

ITERATIVE SOLVER ITERATIONS

Physics.solverIteratlonCount ="7: // is the Unity default

44 // launch a sphere at the point clicked on
45 void Update() {
if (Input.GetMouseButtonDown(0)) {
Camera cam = GameObject.Find("Main Camera") .GetComponent<Camera>():
Ray ray = cam.ScreenPointToRay (Input.mousePosition);
Vector3 dest = ray.origin + ray.direction * 20;
GameObject projectile = GameObject.CreatePrimitive (PrimitiveType.Sphere):;
projectile.transform.position = cam.transform.position;

P I

52 projectile.transform.localScale = new Vector3(0.5f, 0.5f, 0.5f);
53 Rigidbody projBody = projectile.ZAddComponent<Rigidbody>():

54 projBody.useGravity = false;

55 projBody.mass = 1000;

projBody.AddForce (projBody.mass * 100 * (dest - projectile.transform.position));

GameObject ground GameObject CreatePrlmltlve(PrlmltlveType Plane) ;
ground.name = "Ground"”;

ground.transform.localScale = new Vector3 (100, 1, 100);
ground.transform.position = new Vector3(0, 0, 0):

Rigidbody groundBody = ground.ZddComponent<Rigidbody>():
groundBody.isKinematic = true;

place boxes in a pyramid shape

CreateBovaram;d(lZ).

TTEDATTUSR SATUERD TTEDATT
KA - KA

ITERATIVE SOLVER ITERATIONS

Physics.solverIteratlonCount = 7; // 7 is the Unity default

44 // launch a sphere at the point clicked on

45 void Update() {

45 if (Input.GetMouseButtonDown(0)) {

47 Camera cam = GameObject.Find("Main Camera") .GetComponent<Camera>():
43 Ray ray = cam.ScreenPointToRay (Input.mousePosition);

49 Vector3 dest = ray.origin + ray.direction * 20;

50 GameObject projectile = GameObject.CreatePrimitive (PrimitiveType.Sphere):;
51 projectile.transform.position = cam.transform.position;

52 projectile.transform.localScale = new Vector3(0.5f, 0.5f, 0.5f);

53 Rigidbody projBody = projectile.ZAddComponent<Rigidbody>():

54 projBody.useGravity = false;

55 projBody.mass = 1000;

projBody.AddForce (projBody.mass * 100 * (dest - projectile.transform.position));

[lision Detection methods

There are two main detection methods
of broadphase, discrete and continuous
e Discrete checks on each game frame
e Continuous checks path the object took
in between frames, more expensive

ntinuous vs Discrete demo

rces and Constants

In addition to collision handling in most
engines

e Useful for things like air drag, gravity,
magnetism (recalculated every time)

Bullet Physics Engine

»—

BULLET

out Bullet Physics

Open source (zlib license)
First created in 2003

e Written in C/C++

e Ported to Java, C#, Javascript, and more
e Used in Blender game engine

n introduction

Many parallels with Unity’s physics

system (PhysX behind the scenes)

e Rigid bodies are items in physics
simulation

e Rigid bodies exist in a defined world

object

Divided in Bullet Collision and Dynamics

PhysX

out PhysX

Multi-threaded physics simulation SDK
e Developed in 2004 by Ageia - used PPU
e Acquired by Nvidia in 2008 - all builds
after 2.8.3 use GPU

h you use it?

roprietary (non-free), except:

Free for Windows developers

-Free for educational and non-commercial
use on Linux, OS X, and Android

Havok

out Havok

By company of the same name

First released at GDC 2000

e Uses dynamic constraints on rigid bodies
for ragdoll physics

e 2008 Released version 6.5

ther Havok Releases

2008 Havok Cloth
2008 Havok Destruction

hich Engine is Right for Me?

Physics Engine Evaluation Lab (PEEL)

compared engines memory consumption
o Bullet 2.8.1 is worse than PhysX 3.3

o PhysX 2.8.4 and earlier was substantially
better at sweep tests than Bullet

PhysX consumes more GPU, Havok
consumes more CPU

Brownian Motion

hat is Brownian Motion?

Equations used to study turbulent motion
in colloids and macromolecular fluids

iffusive Brownian Motion

Used when large particles diffuse slowly
through fluids
e Assume inertia=20

Xptrl = X, + U0t + Ar,

A = (24D6t)V?

grangian formulation of
ewtons Equations

Used when particles move quickly
considers inertia
e Use fluctuation dissipation theorem to

calculate random force
(fT(t)f(t2)) = 2kTLo(ty —t2)

5ty 1) = { 1/6t 1if t; and 1, are in the same time-step of ot
o 0 otherwise

grangian (continued)

ply random force to Newton’s formula
mi+{x = f"+f

Solve for position

Xn+l = x,,+i'.,,6t,
Xnt1 = Xp+m ' (={% + f5+ (24KTL /602 1,) Ot

ire Particle Effect

Select “source” of particles using
Gaussian

e [hree forces:

o Thermal Buoyancy (proportionate to temp)
o Wind
o Brownian Forces (turbulence)

mperature Decay

The function to emulate temperature loss

ones anjeiadwa) buuieway

A

x relative coordinate to my,

z relative coordinate to m,

@
ialize

i

ially 1500

T<5007C rein
e T decays as

N1

origin increases

distance from

T

oothed Particle
ydrodynamics

Used to “smooth” area between particles
for fluids (e.g. smoke and water)

e Kernal function W (e.g. Gaussian, Cubic)
e Calculates A(r) for any point r (not
necessarily a particle)

Game Engine Simulation
of Soft Bodies

Soft Body Dynamics

* Computer Graphics (plausible not necessarily physically accurate)

* Different from
* Rigid bodies (no relative internal movement)
* Fluids (constantly deformable)

* Examples Include
* Muscles
* Hair
* Vegetation
* Cloth

ng Techniques

asses
Minimization
Resolution

putationally Very Expensive
element simulation

trahedral mesh
putationally Expensive

dy Based

utational Overhead
ution

andle Fracture

=

Two nodes as mass points 6
connected by a parallel circuit of a
spring and a damper.

LS-Dyna Model of UL-3952 3 Foot Pound Impact Test

LS-DYNA user input
Time = 0

Isosur faces o f Pressure
min=0. at elem# 1
max=0. at elem# 11

EMU Simulations

Initial failure site and mode
depends on loading rate @

Damage contours

High rate

home/sasill/femuarol/vg.frm 20 of 22

Basic idea of the
peridynamic theory

@)

Sandia
Nationdl
Laboratoies

Equation of motion:
pii = L, +tb
where L is a functional.

“u

A useful special case:

L,(x1) J[(u(}ﬁ') ulx, 1), x' - x)dV o
! X

where x is any point in the reference configuration, and

f is a vector-valued function.

More concisely:

f is the pairwise
function. It contains all
constitutive information.

It is convenient to assume that
f vanishes outside some

horizon &. £

ulations

ensional elastic membranes
ased
nal

Collision Detection Issues

e Realistic interaction with environment
* Self intersections

* Techniques
* Discrete a-posteriori
* Continuous a priori

e Collisions with Environment
e Well defined interior exists
* Well defined interior does not exist

* Collisions between two Cloths (computationally complex)

Managing Computational Complexity

* Bounding Volumes

* Grids

* Coherence-Exploiting Schemes
* Hybrid Methods

Support for Soft Body Physics

https://youtu.be/KppTmsNFneg

Digital Molecular Matter (DMM)

Maya nCloth

Physics Abstraction Layer (PAL)

CryEngine www.youtube.com/watch?v=hmaHj6mpTOk
EtXUBQ

http://www.youtube.com/watch?v=hmaHj6mpT0k
http://en.wikipedia.org/w/index.php?title=BeamNG&action=edit&redlink=1
http://en.wikipedia.org/wiki/Step_(KDE)
http://en.wikipedia.org/wiki/Step_(KDE)
http://en.wikipedia.org/wiki/Step_(KDE)
http://en.wikipedia.org/wiki/Syflex
http://en.wikipedia.org/wiki/Syflex
http://en.wikipedia.org/wiki/Syflex
http://en.wikipedia.org/wiki/Unreal_Engine_3
http://en.wikipedia.org/wiki/Unreal_Engine_3
http://en.wikipedia.org/wiki/Unreal_Engine_3
http://en.wikipedia.org/wiki/Unreal_Engine_3
http://en.wikipedia.org/wiki/Unreal_Engine_3
http://en.wikipedia.org/wiki/Unreal_Engine_3
http://en.wikipedia.org/wiki/Unreal_Engine_3
http://en.wikipedia.org/wiki/Unreal_Engine_3
http://en.wikipedia.org/w/index.php?title=Vega_FEM&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Vega_FEM&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Vega_FEM&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Vega_FEM&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Vega_FEM&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Vega_FEM&action=edit&redlink=1

Special Relativity

What is Special Relativity?

Well first, what is relativity?

“The theory that deals with motion
of objects when their speed is close to
the speed of light”

What is Special Relativity?

Special Relativity deals with the
theories of Relativity when the objects
being compared are moving uniformly
- This means no acceleration or
rotation

Some things we need to talk about

Inertial Frames
The Galilei Transformation
The Lorentz Transformation

Inertial Frames

Remember Newton’s First Law?

An inertial frame is a frame of reference where the
law of inertia holds

non-inertial frames are those frames of reference that
are accelerating in respect to the inertial frames

*For special relativity, we only care about inertial frames

The Galilei Transformation

Suppose we have two inertial frames moving in the x
direction relative to one another at a constant
velocity

Let’s call them A: (x, t) and B: (X, t’)

The Galilei Transformation provides us a way to
translate between the two inertial frames

x' =x-vt =1

The Lorentz Transformation

In 1905, Einstein’s theory of special relativity claimed
that the Galilei Transformation is wrong at speeds
closer to the speed of light.

Instead, Lorentz Transformation looks more like this:

*Not as crazy as they look

Final notes of some importance
and things | just generally found interesting

One can not travel faster than the speed of light
- As far as we know, this is not a matter of not
having the technology, but rather causality.

The speed of light is always constant regardless of
what inertial frame we are in.

What to do with special relativity?

In 2012, the MIT Game Lab created a game called
A Slower Speed of Light.

The game, although simple in design, allowed players
to view the effects of special relativity first-hand as
they collected orbs which incrementally lowered the
speed of light.

5 SLONER
SPITD - LICH]

@ B
SPECTRIP }%‘IHE.

A Slower Speed of Light

A Slower Speed of Light poppier frect

Velocity v= 0.00c

A Slower Speed of Light “scorchlight frect”

YOUR TIME
o
00:03:32
* * _
*
R .
WORLD TIME

* 100:03:44

| # Tweet |

©

£

A WHAT HAPPENED?
4

4
»

Open Relativity

With the game, MIT Game Lab also released a Unity
tool-kit called OpenRelativity, which gave developers
access to tools which could simulate Special Relativity
in their own games

A demo has been created in the tool-kit to allow you
to visualize its potential

mil
‘GHIT]E LAB

Code Snippets -- Open Relativity

A great deal of the code is very complex, and harder
to show and explain.

| will cover some examples that are a bit easier to
sample, but most of the knowledge comes from
looking at the theory, as the code is a reflection of
it.

Code Snippets -- Open Relativity

Starting pretty basic... Time Dilation

/******************************

* PART TWO OF ALGORITHM

* THE NEXT 4 LINES OF CODE FIND

* THE TIME PASSED IN WORLD FRAME

* ****************************/

//find this constant

sqrtOneMinusVSquaredCWDividedByCSquared = (double)Math.Sqrt(1 - Math.Pow(playerVelocity, 2) / cSqrd);

//Set by Unity, time since last update
deltaTimePlayer = (double)Time.deltaTime;
//Get the total time passed of the player and world for display purposes
if (keyHit)
{

totalTimePlayer += deltaTimePlayer;

if (!double.IsNaN(sqrtOneMinusVSquaredCWDividedByCSquared))

{
//Get the delta time passed for the world, changed by relativistic effects
deltaTimeWorld = deltaTimePlayer / sqrtOneMinusVSquaredCWDividedByCSquared;
//and get the total time passed in the world
totalTimekWorld += deltaTimeWorld;

Code Snippets -- Open Relativity

The shader gets pretty crazy... Lorentz Transform

//get the new position offset, based on the new time we just found
//Should only be in the Z direction

riw.x += rotateViw.x * tisw;
riw.y += rotateViw.y * tisw;
riw.z += rotateViw.z * tisw;

//Apply Lorentz transform
// float newz =(riw.z + state.PlayerVelocity * tisw) / state.SqrtOneMinusVSquaredCWDividedByCSquared;
//I had to break it up into steps, unity was getting order of operations wrong.

float newz = (((float)speed*_spdOfLight) * tisw);

newz = riw.z + newz;
newz /= (float)sqrt(l - (speed*speed));
riw.z = newz;
if (speed != @)
{
float trx = riw.x;
float trry = riw.y;

riw.x = riw.x * (ca + ux*ux*(1-ca)) + riw.y*(ux*uy*(1l-ca)) - riw.z*(uy*sa);
riw.y = trx * (uy*ux*(1l-ca)) + riw.y * (ca + uy*uy*(1-ca)) + riw.z*(ux*sa);
riw.z = trx * (uy*sa) - trry * (ux*sa) + riw.z*(ca);

But again... why?

So how exactly can you use this?

Although the scope of special relativity has limits, it
still has plenty of potential applications in the gaming
world.

e (Creating a racing game at near speed of light speeds
e Enhancing visual effects
e Giving the illusion of speed

Questions?

Ball fired from a cannon at 60mph, from a truck going 60mph

Obligatory Physics GIF

