
PHYSICS
Ross Hays, Isaac Folzenlogen,

John Chumley, Zachary Atwood

Physics Engines

● Many games what some response in game
to collisions and other interactions

● Programming every possible interaction
in infeasible

● Reusable between multiple games

Why are physics engine needed

● Real time physics engines such as those
used in games cannot simulate perfect
interactions

● Some shortcuts are needed to keep
processing time down for real time

● Too many objects to simulate also results
in slowdown

Limitations

NVDIA PhysX (used in Unity & Unreal)
Havok (Half-Life 2, Halo series, Skyrim)
Box2D (2D physics engine, Angry Birds)
Bullet (open source, shown later)

Some popular physics engines

Bouncing ball demonstration

Bouncing ball demo: source code

● Two main components of most physics
engines: collision detection and collision
resolution

● Collision detection broken into multiple
phases

● Collision resolution uses multiple solvers

Implementation: Phases & Solvers

Broad Phase: Basically what it sounds like,
preliminary BB check or sweep and prune

Narrow Phase: Exact collisions checked for
if the possibility made it past the broad
phase

Collision Detection

● Solvers are algorithms that exist to
decide the proper response to all
collisions that made it past detection

● Iterative solvers iteratively improve
● Allow callbacks on specific items for user

handled collisions

Collision Resolution

Collision demonstration

Collision demonstration

Collision demonstration

Angry birds demo: source code

● There are two main detection methods
of broadphase, discrete and continuous

● Discrete checks on each game frame
● Continuous checks path the object took

in between frames, more expensive

Collision Detection methods

Continuous vs Discrete demo

● In addition to collision handling in most
engines

● Useful for things like air drag, gravity,
magnetism (recalculated every time)

Forces and Constants

Bullet Physics Engine

About Bullet Physics
● Open source (zlib license)
● First created in 2003
● Written in C/C++
● Ported to Java, C#, Javascript, and more
● Used in Blender game engine

● Many parallels with Unity’s physics
system (PhysX behind the scenes)

● Rigid bodies are items in physics
simulation

● Rigid bodies exist in a defined world
object

● Divided in Bullet Collision and Dynamics

An introduction

PhysX

• Multi-threaded physics simulation SDK
• Developed in 2004 by Ageia - used PPU
• Acquired by Nvidia in 2008 - all builds
after 2.8.3 use GPU

About PhysX

•Proprietary (non-free), except:
–Free for Windows developers
–Free for educational and non-commercial
use on Linux, OS X, and Android

Can you use it?

Havok

● By company of the same name
● First released at GDC 2000
● Uses dynamic constraints on rigid bodies

for ragdoll physics
● 2008 Released version 6.5

About Havok

● 2008 Havok Cloth
● 2008 Havok Destruction

Other Havok Releases

● Physics Engine Evaluation Lab (PEEL)
compared engines memory consumption
○ Bullet 2.8.1 is worse than PhysX 3.3
○ PhysX 2.8.4 and earlier was substantially

better at sweep tests than Bullet
● PhysX consumes more GPU, Havok

consumes more CPU

Which Engine is Right for Me?

Brownian Motion

● Equations used to study turbulent motion
in colloids and macromolecular fluids

What is Brownian Motion?

● Used when large particles diffuse slowly
through fluids

● Assume inertia = 0

Diffusive Brownian Motion

● Used when particles move quickly
● considers inertia
● Use fluctuation dissipation theorem to

calculate random force

Lagrangian formulation of
Newtons Equations

Apply random force to Newton’s formula

Solve for position

Lagrangian (continued)

● Select “source” of particles using
Gaussian

● Three forces:
○ Thermal Buoyancy (proportionate to temp)
○ Wind
○ Brownian Forces (turbulence)

Fire Particle Effect

● T initially 1500 ℃
● T<500℃ reinitialize
● T decays as

distance from
origin increases

Temperature Decay

● Used to “smooth” area between particles
for fluids (e.g. smoke and water)

● Kernal function W (e.g. Gaussian, Cubic)
● Calculates A(r) for any point r (not

necessarily a particle)

Smoothed Particle
Hydrodynamics

A(r)

Game Engine Simulation
of Soft Bodies

Soft Body Dynamics

• Computer Graphics (plausible not necessarily physically accurate)

• Different from
• Rigid bodies (no relative internal movement)
• Fluids (constantly deformable)

• Examples Include
• Muscles
• Hair
• Vegetation
• Cloth

Modeling Techniques

• Spring Masses
• Energy Minimization

Low Resolution

Computationally Very Expensive

• Finite element simulation
• Tetrahedral mesh

• Computationally Expensive

• Rigid Body Based

Spring Mass Model with Damper

• Low Computational Overhead
• Low Resolution
• Doesn't Handle Fracture

LS-Dyna Model of UL-3952 3 Foot Pound Impact Test

EMU Simulations

Cloth Simulations

• Two dimensional elastic membranes

• Force based

• Positional

Collision Detection Issues

• Realistic interaction with environment

• Self intersections

• Techniques
• Discrete a-posteriori
• Continuous a priori

• Collisions with Environment
• Well defined interior exists
• Well defined interior does not exist

• Collisions between two Cloths (computationally complex)

Managing Computational Complexity

• Bounding Volumes

• Grids

• Coherence-Exploiting Schemes

• Hybrid Methods

Support for Soft Body Physics

● Digital Molecular Matter (DMM)
● Maya nCloth
● Physics Abstraction Layer (PAL)
● CryEngine www.youtube.com/watch?v=hmaHj6mpT0k
● EtXUBQ

Predeces
sor of
BeamNG
.

*
Ste
p
*
Syfl
ex

(Cloth
simulator
)

*
Unr
eal
Eng
ine
3
*
Veg
a
FE
M

https://youtu.be/KppTmsNFneg

http://www.youtube.com/watch?v=hmaHj6mpT0k
http://en.wikipedia.org/w/index.php?title=BeamNG&action=edit&redlink=1
http://en.wikipedia.org/wiki/Step_(KDE)
http://en.wikipedia.org/wiki/Step_(KDE)
http://en.wikipedia.org/wiki/Step_(KDE)
http://en.wikipedia.org/wiki/Syflex
http://en.wikipedia.org/wiki/Syflex
http://en.wikipedia.org/wiki/Syflex
http://en.wikipedia.org/wiki/Unreal_Engine_3
http://en.wikipedia.org/wiki/Unreal_Engine_3
http://en.wikipedia.org/wiki/Unreal_Engine_3
http://en.wikipedia.org/wiki/Unreal_Engine_3
http://en.wikipedia.org/wiki/Unreal_Engine_3
http://en.wikipedia.org/wiki/Unreal_Engine_3
http://en.wikipedia.org/wiki/Unreal_Engine_3
http://en.wikipedia.org/wiki/Unreal_Engine_3
http://en.wikipedia.org/w/index.php?title=Vega_FEM&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Vega_FEM&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Vega_FEM&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Vega_FEM&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Vega_FEM&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Vega_FEM&action=edit&redlink=1

Special Relativity

What is Special Relativity?
Well first, what is relativity?

“The theory that deals with motion
of objects when their speed is close to

the speed of light”

What is Special Relativity?

Special Relativity deals with the
theories of Relativity when the objects
being compared are moving uniformly
- This means no acceleration or

rotation

Some things we need to talk about

Inertial Frames
The Galilei Transformation
The Lorentz Transformation

Inertial Frames
Remember Newton’s First Law?

An inertial frame is a frame of reference where the
law of inertia holds

non-inertial frames are those frames of reference that
are accelerating in respect to the inertial frames

*For special relativity, we only care about inertial frames

The Galilei Transformation
Suppose we have two inertial frames moving in the x
direction relative to one another at a constant
velocity

Let’s call them A: (x, t) and B: (x’, t’)

The Galilei Transformation provides us a way to
translate between the two inertial frames

x’ = x - vt t = t’

The Lorentz Transformation
In 1905, Einstein’s theory of special relativity claimed
that the Galilei Transformation is wrong at speeds
closer to the speed of light.

Instead, Lorentz Transformation looks more like this:

*Not as crazy as they look

Final notes of some importance
and things I just generally found interesting

One can not travel faster than the speed of light
- As far as we know, this is not a matter of not

having the technology, but rather causality.

The speed of light is always constant regardless of
what inertial frame we are in.

What to do with special relativity?

In 2012, the MIT Game Lab created a game called
A Slower Speed of Light.

The game, although simple in design, allowed players
to view the effects of special relativity first-hand as
they collected orbs which incrementally lowered the
speed of light.

A Slower Speed of Light

A Slower Speed of Light Doppler Effect

A Slower Speed of Light “Searchlight Effect”

A Slower Speed of Light Time Dilation

Open Relativity

With the game, MIT Game Lab also released a Unity
tool-kit called OpenRelativity, which gave developers
access to tools which could simulate Special Relativity
in their own games

A demo has been created in the tool-kit to allow you
to visualize its potential

Open Relativity -- Demo

Code Snippets -- Open Relativity
A great deal of the code is very complex, and harder
to show and explain.

I will cover some examples that are a bit easier to
sample, but most of the knowledge comes from
looking at the theory, as the code is a reflection of
it.

Starting pretty basic… Time Dilation

Code Snippets -- Open Relativity

The shader gets pretty crazy… Lorentz Transform

Code Snippets -- Open Relativity

But again… why?
So how exactly can you use this?

Although the scope of special relativity has limits, it
still has plenty of potential applications in the gaming
world.

● Creating a racing game at near speed of light speeds
● Enhancing visual effects
● Giving the illusion of speed

Questions?

Obligatory Physics GIF

